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Global bifurcations and bistability at the locking boundaries of a semiconductor laser
with phase-conjugate feedback
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We investigate dynamics and bifurcations of a single-mode semiconductor laser subject to phase-conjugate
feedback near the locking region. The system is described by rate equations which are a three-dimensional
system with a delay. With tools that go much beyond mere simulation, we find and follow steady states
regardless of their stability and compute unstable manifolds of saddle points. Furthermore, we identify hetero-
clinic bifurcations, which turn out to be responsible for bistability and excitability at the locking boundaries.
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[. INTRODUCTION trip in the external cavity. A laser with PCF was shown to
exhibit complicated nonlinear dynamics, including stable pe-
Recently there has been much interest in the nonlineatiodic operation, quasiperiodic motion and chaos, as was
dynamics of semiconductor lasers; see, for example, the rdound in detailed simulations of bifurcation diagrams, phase
cent overviews, Refd.1,2], and further references therein. plots, and optical spectra. The overall picture is that of re-
Due to the material properties of semiconductor lasers, exgions of periodic output that are interspersed with “bubbles”
ternal influences can alter the stability and dynamics of thef chaos[9,10].
laser dramatically. Knowledge of this effect is therefore es- Here we concentrate on the mechanism of locking. Physi-
sential for physical applications. Of particular interest arecally, in its locking range the PCF laser is both frequency
lasers subject to optical feedback, such as lasers with cotecked and phase locked to the frequency of the PCM pump
ventional optical feedbackCOF) from an external mirror laser. Unlike the case of a COF laser, phase locking in a PCF
[3,4], lasers with phase conjugate feedb@Bk10], the case laser does not depend on the feedback phase. In particular,
considered here, lasers with optoelectronic feeddddf, = phase locking results in an ultranarrow laser linewidth that
and mutually coupled lasers with del&g2]. In all these has been shown to be stable even with the addition of noise
cases the relevant and generally well-established models af8]. By continuing steady states and computing the unstable
delay differential equation€DDESs) [13]. manifolds of saddle points we find that hysteresis loops and
Delay differential equations have received a lot of atten-global bifurcations are involved in the mechanism of locking
tion recently. Other areas where DDEs are crucial includén the PCF laser.
biology [14], neural network$15], and control theory16].
It is quite a challenge to understand the dynamics and bifur- Il. RATE EQUATIONS
cations of a DDE. Already in the case of one fixed detay ) ) ) o
(like in a laser with feedbagkthe phase space of the DDE is ~ Our object of study is a single-mode PCF laser receiving
the infinite-dimensional space of continuous functions on thdéedback from a PCM that responds instantaneously, as is
delay interval[ — 7,0]; see Ref[17)]. Tackling delay equa- shqwn schematically in Fig. 1 The length of the laser is
tions arising in applications is analytically very hard, and fortypically less than 1 mm, while the length of the external
a long time the only numerical tool was direct simulation bycavity L can be several centimeters to 1 m, leading to typical
integration of the DDE. Very recently the package DDE-delay timesr=2L/c in the range of 0.4 nsto 7.0 ns.
BIFTOOL [18] was developed, allowing numerical continu- The rate equations describing this PCF laser are well es-
ation of steady states and periodic solutions and the detectidablished[7,9,10 and can be written as
of their local bifurcations. Building on this work, we devel-
oped a method for computing unstable manifolds in DDEs. d_E= = —iaGN[N(t) = Ny ] +
These tools allow one to find global bifurcations that are dt 2 N S0
responsible for sudden changes of the observed dynamics of

1
G(t)— T—p”E(t)

a DDE + KE* (t_ T)eXF[i ¢PCM]!

In this paper we bring these tools to bear to study the @
locking mechanism in a semiconductor laser receiving d_N: '__ N(t) —G(D)|E)[?
phase-conjugate feedba¢RCPH from a phase-conjugating dt q Te

mirror (PCM) [7,9,10. Experimentally, PCF can be gener-

ated by degenerate four-wave mixing, a nonlinear proces®r the evolution of the slowly varying complex electric
that can be achieved by counter propagating laser beams field E(t)=E,(t) +iE,(t) and the population inversion
atomic vapors or a semiconductor material, or by using gratN(t). In system (1), nonlinear gain is included a&

ings or optic crystal$5,19,20. Phase-conjugate feedback is =Gn(N(t) —Np)(1—€P(t)), where e=3.57X 108 is the
physically interesting as it produces a return wave that coinnonlinear gain coefficient angl(t) =|E(t)|? is the intensity.
cides exactly with the incident wave, so that alignment is lesg his produces an effective detuning of 166 MHz. Parameter
of an issue. Furthermore, distortions are undone on the retuivalues are set to realistic valugd], namely, the line-width
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FIG. 1. Sketch of a semiconductor laser with phase-conjugate 2/\/"
feedback. ob S
enhancement factar= 3, the optical gainGy=1190 s?, 2 02 04 06

the photon lifetime 7,=1.4 ps, the injection current oF® — - y ]
=65.1 mA, the magnitude of the electron chamge 1.6 ——
x 10719 C, the electron lifetime.=2 ns, and the transpar- ||,||5
ency electron numbe¥,=1.64x 10°. The phase shifthpcy, 4r i
at the PCM was set to zero amdl,=Ny+1/(Gy7p). The 3
feedback term in systeid) involves the feedback rateand 2
the external cavity round-trip time, which we fix atr 1 s s P vt
=2/3 ns. Together they form the dimensionless bifurcation 0 02 04 o 08 ) 08 !
parametel 7. ~+—————— nonsymmetric ——»
System(1) is written in the frame of reference of the
solitary laser. A locked solution is the one where the fre-
quency of the PCM pump laser is locked to that of the soli-,
tary laser and, therefore, locked solutions are steady states
system(1). Note that noise terms due to spontaneous emis-
sion have been left off systeifl). It has been shown that lows one to find and follow stable solutiofihose one also
both intensity and frequency noise are negligible at the lowfinds by simulatiop, but also unstable ones. Furthermore,
frequency range we are dealing witfi. DDE-BIFTOOL detects local bifurcations, including saddle-
Mathematically, systerfd) is a system of DDEEL7]. The node bifurcations, Hopf bifurcations, period-doubling bifur-
state of the system at tinte>0 is a continuous function on cations, and saddle-node bifurcations of limit cycles. The
the time interva[t— 7,t], which is an evolution of the initial continuation of bifurcations leading to mixed-mode oscilla-

i : A tions of a COF laser in Ref23] and our bifurcation analysis
condition defined on the time interviat- 7,0]. Therefore, the ; ;
system is infinite dimensional. Whild&e(N)-space is not the of the PCF laser here and in R¢24] are first examples of

g tinuation studies with DDE-BIFTOOL.
phase space of systeft), it is nevertheless helpful to show con . i
the dynamics projected ontoE(N)-space, which is also S_eCO”d’ we compute the one-dlm_en5|o(ilal) unstable_
called the physical space of syste). manifolds of saddle steady states with one unstable eigen-

System(1) is symmetric under the transformatid value. Each 1D unstable manifold has two branches, which

—E, which corresponds to a ofation ofof the E-plane, so 2 “GRPC Sl Y AR D L o close 10 but
that an attractor is either symmetric, or has a symmetné"l 9 9

. ; different sides of the steady state. This eigendirection can
counterpar{10,21. Physically, this symmetry corresponds on
to a pha?set[shift ]b;lyr. T)ilwe syr¥1metry iBr/anies E/estrictiogs on be found by an iterative approaf®b] or with a routine that

: : L o was recently added to DDE-BIFTOOL. Knowing at which
the types of bifurcations of periodic solutions: for example, . .
symmetric periodic solutions cannot undergo period_attractor the branches of 1D unstable manifolds end up is

doubling bifurcations[22]. More generally, this discrete g(r)lﬁflcrg;ruigdseéséta\r/\dmg the global dynamics, as will be-
symmetry allows for the possibility of symmetry-breaking T

FIG. 2. Bifurcation diagram, obtained by simulation showing
normalized inversiorN versus the feedback strengkr (a), and
caomputed with DDE-BIFTOOL showing a normalized amplitude
rsusk T (b); see text for details.

bifurcations. Note that the I_DCF laser considered h_ere is dif- IV. BIFURCATION DIAGRAMS
ferent from the COF laser in terms of the underlying sym-
metry of the governing equatiof21]. The COF laser is Figure 2 contains two bifurcation diagrams. In Figa)2
symmetric under any rotation of the electric fiflcaind does we integrated systerfil) and plotted(after transients died
not feature symmetry-breaking bifurcations. away the normalized value of the inversiaN=(N/Ng
—1)Xx10° whenever the intensity crossed its average
Ill. COMPUTATIONAL METHODS FOR DDEs value in the positive directio10]. The region with no

points corresponds to a locked solution, a small number of

In our study we make use of very recent developments impoints correspond to a periodic solution, and a large number
theory and numerical methods for DDEs. In simulations weof points correspond to chaotic dynamics. Due to the pres-
integrate systentl) with an Adams-Bashforth fourth-order ence of hysteresis discussed below, the periodic solution for
multistep method. Moreover, we use recently developedqre[0.0000,0.295Bwas computed for increasingr, while
tools for DDEs that go beyond simulation. the periodic solution fok7e[0.7487,0.900#was computed

First, we use the continuation package DDE-BIFTOOLfor decreasingsr.
[18], consisting of Matlab routines, for the bifurcation analy-  Figure 4b) was obtained with DDE-BIFTOOL. For
sis of steady states and periodic solutions. This not only alsteady states we plot Re| and for periodic solutions we
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FIG. 3. Phase portraits shown in projection onkg N)-space.
Except for(a) and(b), plotted are both branches of the 1D unstable FIG. 4. Projection of plots in Fig. 3 onto th&plane; the square
manifold of one of the two symmetric saddle points) The box g [—270,27QX[ —270,27Q.
is [—200,20Qx [ — 200,200 X [7.61x 1%, 7.68x 10°]; from (a) to
(1), x7 takes the values 0.1000, 0.2700, 0.2952, 0.3065, 0.4410,

0.5180, 0.6182, 0.7183, 0.7252, 0.7253, 0.7904, and 0.9004.  E-plane(Fig. 4). Except for panelga) and (b), which were
obtained by simulation, these phase portraits were obtained
plot [ma{Re(E)]—min[Re(E)]|, offset by the Reff) value by plotting both branches of the 1D unstable manifold of one
of the steady states at the Hopf point. Attracting solutions argf the two symmetric saddle points, marked Ky the cor-
drawn as solid curves, while unstable solutions are drawn agsponding attracting steady states are markedrbyThe
dashed curves. By studying the eigenvalues of the system Wfyrcation diagrams in Fig. 2, along with Figs. 3 and 4,
are able to identify the bifurcations involved, namely apresent a complete picture of the route into and out of lock-
saddle-node bifurcatiofSN), a Hopf bifurcation(H), period-  jng for the PCF laser specified in Sec. Il.
doubling bifurcationdPD), and a saddle-node bifurcation of ko very low values ofcr, system(1) has an almost pla-
limit cycles (SL). A global saddle-focus heterocliniSFH  nar periodic solution surrounding the origin of tEeplane
bifurcation was observed atk7~0.2953. The one- [Figs. 3a) and 4a)], which is the continuation of the free-
dimensional unstable manifold of one saddle approaches thgnning laser g r=0) that has constant power and inversion.
other saddle along its stable manifold in a spiralling fashionyyith increasing feedback the laser is destabilized. First, the
In light of the symmetry of systerttl), this is the case of & peripdic solution starts to curl up near two distinct points
Shil'nikov bifurcation with negative saddle quantity, that is, [Figs. 3b) and 4b)]. It develops a typical shape and does
not involving horseshoe dynamics; see Reéf2] and Sec. end in a SFH bifurcation when it hits two saddle-focus
VIA. The symmetry of solution branches, which can besieady states atr~0.2953,[Fig. 2(b)]. The exact nature of
found from the respective phase portraits, is indicated at theyis global bifurcation is detailed in Sec. VIA. The two
top and bottom of Fig. 2. o , saddle-focus steady states are each others symmetric coun-

Figure 2a) is useful for investigating bifurcations of at- terparts and are born together with two attractors in the SN
tractors, but in Fig. @) we also follow unstable solutions jfyrcation atkr~0.2794, that is, before the SFH bifurcation
and their bifurcations. We can already see that the systefig. 2(b)]. This produces a region of bistability between the
features hysteresis at the boundaries of the locking regiony,ir of attracting steady states and the periodic solution. In-
which is discussed in more detail below. Figuré)2also deed, fork7e[0.2794,0.295B one branch of the 1D un-
shows that the extra branches that develop in Fi@) @t gtaple manifold converges to the periodic solution, while the
x7=0.1347 are not bifurcations. They are due to the syMyiner branch converges to a locked steady dtigs. 3c)
metric limit cycle spiraling through, and thus producing extragn 40)]. Physically, this bistability means that the laser is

crossings with, its value of average intensity. capable of producing locked or periodic output for the same
experimental value ok 7, depending on the initial condition.
V. UNSTABLE MANIFOLDS After the SFH bifurcation, bistability is lost and both

Figures 3 and 4 show the phase portraits corresponding toranches of the saddle-focus steady state converge to one of
Fig. 2, in projection onto E,N)-space(Fig. 3) and the the two locked solutions, which are the only attractors and
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symmetric images of each othiiigs. 3d) and 4d)]. @) (b)

This bistability leads to a hysteresis loop: for increasing
7 the symmetric periodic solution is destroyed in the SFH By
bifurcation and the system jumps to one of the steady states,
whereas for decreasingr the two steady states are de-
stroyed in the SN bifurcation and the system jumps to the
symmetric periodic solution. So not only do we see a quali-
tative change in the attracting solutions, but we also see a
change in the symmetry of the attractor, as is indicated in 2o 2007
Fig. 2.

As k7 is increased further through the locking region, the Ey|m zi| By m
two branches of the 1D unstable manifold of the saddle ]
steady state continue to converge to the respective locked z s
solutions, but with an increasingly larger degree of spiraling
[Figs. 3e)—3(h) and 4e)—4(h)]. Physically, this spiraling
corresponds to the characteristic relaxation oscillations of the 200
laser (a periodic exchange of energy between electric field 0 ar 0 %7
and inversiol, which is still damped. Ak 7~0.7247 there is FI_G_. 5._ The periodic solution just l_)e_fore the s_addle-focus het-
a SL bifurcation creating two pairs of symmetric periodic eroclinic bifurcation(a) and the hetero_clmlc ponnectlon between the
solutions[Fig. 2(b)], one attracting and one of saddle type. saddle steady states aanZ e_lt the blfurcatlor(b). Panelq(c) a_nd
The attracting periodic solutions grow at a rate proportionaf}d) show the corresponding time tracesEf with the mesh points
to the square root of the deviation afr from its value at

bifurcation; one speaks of an undamping of the relaxatlorhon& namely, a saddle-focus heteroclinic bifurcation be-

oscillations. The saddle periodic solutions shrink down to th
locked steady state and disappear in a subcritical Hopf bifu(rn’[—Ween two saddle steady states at the left-hand boundary, and

: : o : a heteroclinic bifurcation between a saddle steady state and a
cation(H) at k7~0.7487; see Fig.(®). This bifurcation re- L . ;
sults in the loss of stability of the locked steady states an&?ddle periodic solution at the right-hand boundary. We now

forms the boundary of the locking range. The system jumpéjlsCuss these two global bifurcations in detail.

to one of the two attracting periodic solutions and the laser

produces self-pulsationgrelaxation oscillations Indeed, A. Heteroclinic connection between two steady states
both branches of the unstable manifold of the saddle steady |n Figure 5a) we show the symmetric limit cycle just

state end up at an attracting periodic solufiéigs. 3j) and  pefore the SFH bifurcation in which it hits the pair of saddle-
4G)]. focus steady states; and x,. A time-trace ofE, over its
In other words, also the right-hand locking boundary iSperiodTm41.0ris shown in Fig. &), where the mesh points
associated with a region of bistability: forkr ysed in the DDE-BIFTOOL continuation are highlighted.
€[0.7247,0.748F both the pair of locked solutions as well When approaching the SFH bifurcation the peﬁbgoes to
as the pair of periodic solutions corresponding to undampeghfinity. At SFH the periodic solution disappears and instead
relaxation oscillations are stable. Again, this leads to a hySWe have a Symmetric pair of heteroclinic connections be-
teresis loop whem 7 is swept up and down through SL and tweenx, andx,, one of which is shown in Fig.(5). This
H. connecting orbit was computed with the new extension of
Note already that the two branches of the unstable manippe-BIFTOOL introduced in Ref[26]. Its time-trace with
fold of the saddle steady state behave differently just after Skighlighted mesh points is shown in Figds. An analysis of
[Figs. 3i) and 4i)] and just before HFigs. 3j) and 4j)]. As  the eigenvalues of the saddle foci shows a negative saddle
will be discussed in detail in Sec. VIB, this implies the quantity,c=\,+Re(\, 1), wherex,>0, while \, 5 are the
existence of a heteroclinic bifurcation between SL and H. Comp|ex pair of eigen\’/ames with negative rea|ypart that are
When 7 is increased further, the pair of stable periodiccloset to the imaginary axis. This implies that there is a
solutions undergoes a period-doubling cascade starting @hique bifurcating stable limit cyclg22].
«k7~0.8393 [Fig. 2b)]. This eventually leads to both  The fact that this global bifurcation appears as two simul-
branches of the 1D unstable manifold of the saddle steadyaneous heteroclinic connections is due to the symmetry of
state accumulating on a chaotic attradgteigs. 31) and 41)].  system(1). When one divides out the symmetry and identi-
For even larger values ofr the two attractors collide in an  fies x, andx, then one gets just a regular saddle-focus ho-
attractor crisis caused by a collision of their basins of attracmoclinic connection.
tion, culminating in symmetry restoring inside the chaotic e remark that after but near the SFH bifurcation the
region[10]. system is excitable—an example of excitability due to a het-
eroclinic bifurcation[27]. When the locked solution is per-
turbed to the other-side of the saddle steady state it will
produce a large excursion by following roughly the old het-
We already mentioned in the preceding section that aeroclinic connection and ending up at the other locked solu-
both boundaries of the locking range we find global bifurca-tion [Figs. 3d) and 4d)]. Physically, this corresponds to a

N

-
&
'

ighlighted.

VI. GLOBAL BIFURCATIONS
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phase jump byr and a relaxing pulse in the power of the
laser. We remark that the amplitude of this pulse is quite
small. This can also be inferred from Figd# the distance
from the origin in theE-plane does not change much and the
power is the square of this distance.

WH(T'1)

B. Heteroclinic connection between a steady state
and a periodic orbit

Between SL and H we have another region of bistability FIG. 6. Before(a), at (b), and after(c) a heteroglin!c conn_ection
where again the laser can produce qualitatively differenPetween a saddle steady stageand a saddle periodic solutidr.
stable output depending on the initial condition. The infinite-
dimensional stable manifold of the unstable periodic solutiorBoth feature bistabilities that lead to hysteresis loops. Fur-
forms the boundary between solutions converging to thehermore, both transitions to locking are associated with glo-
locked steady state or the stable periodic solution. bal bifurcations, namely, a saddle-focus heteroclinic bifurca-

As the unstable periodic solution decreases in size thergon and a heteroclinic bifurcation between a steady state and
must be a heteroclinic bifurcation located between the twa periodic solution, respectively. Recently developed tools
attractors, and we explain this in detail now. Figurés 8nd  for DDEs allowed us to study these global bifurcations in
4(i) show the 1D unstable manifolds farr=0.7252, which  unprecedented detail.
is typical of the regiork7e[0.7247,0.725p where we see The bifurcation scenario we described is structurally
one branch spiraling into a periodic solution, while the otherstable. Initial investigations of some bifurcation curves in the
branch spirals to a locked solution. However, &t  plane of k7 versus injection current indicate that this sce-
=0.7253[Figs. 3j) and 4j)], one branch spirals into a peri- nario appears to be typical for a PCF laser pumped near its
odic solution as before, but the other branch now spirals outhreshold currentup to about 7.7% above threshglavhich
to the symmetric counterpart of this periodic solution. Thisis the region of injection current most commonly investi-
implies that between the values afr=0.7252 andx7  gated in feedback experiments. The construction of a full
=0.7253 a heteroclinic bifurcation must take place, as igwo-dimensional bifurcation diagram is the next logical step.
sketched in Fig. 6. Initially, the 1D unstable manifold However, at present this is quite a challenge and requires
WH(xo) of X spirals into the locked solutiofFig. 6@)]. As  further developments of numerical methods for DDEs. We
k7 is increased, the amplitude of the saddle periodic solutiorare hopeful to report results in this direction in the near fu-
I'; starts to decrease, from maximum amplitude at SL to zeraure.
amplitude at H, as can be seen in Figh)2 For a particular Other ongoing investigations of the PCF laser concern the
value of k7,W"(x,) forms a connection with the stable role of periodic solutions and their unstable manifolds in
manifold W3(T";) of the saddle periodic solutiohi; [Fig.  transitions to chaos for larger valuesof. For a study of the
6(b)]. As «7 is increased further this connection is lost andbreakup of a torus and a subsequent sudden transition to
WY(xo) spirals out to the attracting periodic solutiba [Fig.  chaos see Ref24].

6(c)]. This behavior is preserved after the subcritical Hopf In more general terms, we believe that the results pre-
bifurcation (H): one branch of the saddle steady state consented here showcase the usefulness of continuation and
verges to a stable periodic solution and the other branch comanifold computations for the study of DDEs.
verges to the symmetric counterpart of this periodic solution
[Figs. 3k) and 4k)].
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