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Global bifurcations and bistability at the locking boundaries of a semiconductor laser
with phase-conjugate feedback

Kirk Green and Bernd Krauskopf
Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, United Kingdom

~Received 26 September 2001; revised manuscript received 4 February 2002; published 30 July 2002!

We investigate dynamics and bifurcations of a single-mode semiconductor laser subject to phase-conjugate
feedback near the locking region. The system is described by rate equations which are a three-dimensional
system with a delay. With tools that go much beyond mere simulation, we find and follow steady states
regardless of their stability and compute unstable manifolds of saddle points. Furthermore, we identify hetero-
clinic bifurcations, which turn out to be responsible for bistability and excitability at the locking boundaries.

DOI: 10.1103/PhysRevE.66.016220 PACS number~s!: 05.45.Xt, 05.45.Gg, 42.65.2k
e
r

n.
e
th
es
r

co

a

n
d

fu

is
th

fo
by
E
u-
ti
l-
Es
re
s

th
in

r-
e
s

ra
is
in

es
tu

to
e-
as
se
re-
s’’

ysi-
cy
mp
CF

ular,
hat
oise
ble

and
ng

ing
s is
is
al
cal

es-

ic

ter
I. INTRODUCTION

Recently there has been much interest in the nonlin
dynamics of semiconductor lasers; see, for example, the
cent overviews, Refs.@1,2#, and further references therei
Due to the material properties of semiconductor lasers,
ternal influences can alter the stability and dynamics of
laser dramatically. Knowledge of this effect is therefore
sential for physical applications. Of particular interest a
lasers subject to optical feedback, such as lasers with
ventional optical feedback~COF! from an external mirror
@3,4#, lasers with phase conjugate feedback@5–10#, the case
considered here, lasers with optoelectronic feedback@11#,
and mutually coupled lasers with delay@12#. In all these
cases the relevant and generally well-established models
delay differential equations~DDEs! @13#.

Delay differential equations have received a lot of atte
tion recently. Other areas where DDEs are crucial inclu
biology @14#, neural networks@15#, and control theory@16#.
It is quite a challenge to understand the dynamics and bi
cations of a DDE. Already in the case of one fixed delayt
~like in a laser with feedback!, the phase space of the DDE
the infinite-dimensional space of continuous functions on
delay interval@2t,0#; see Ref.@17#. Tackling delay equa-
tions arising in applications is analytically very hard, and
a long time the only numerical tool was direct simulation
integration of the DDE. Very recently the package DD
BIFTOOL @18# was developed, allowing numerical contin
ation of steady states and periodic solutions and the detec
of their local bifurcations. Building on this work, we deve
oped a method for computing unstable manifolds in DD
These tools allow one to find global bifurcations that a
responsible for sudden changes of the observed dynamic
a DDE.

In this paper we bring these tools to bear to study
locking mechanism in a semiconductor laser receiv
phase-conjugate feedback~PCF! from a phase-conjugating
mirror ~PCM! @7,9,10#. Experimentally, PCF can be gene
ated by degenerate four-wave mixing, a nonlinear proc
that can be achieved by counter propagating laser beam
atomic vapors or a semiconductor material, or by using g
ings or optic crystals@5,19,20#. Phase-conjugate feedback
physically interesting as it produces a return wave that co
cides exactly with the incident wave, so that alignment is l
of an issue. Furthermore, distortions are undone on the re
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trip in the external cavity. A laser with PCF was shown
exhibit complicated nonlinear dynamics, including stable p
riodic operation, quasiperiodic motion and chaos, as w
found in detailed simulations of bifurcation diagrams, pha
plots, and optical spectra. The overall picture is that of
gions of periodic output that are interspersed with ‘‘bubble
of chaos@9,10#.

Here we concentrate on the mechanism of locking. Ph
cally, in its locking range the PCF laser is both frequen
locked and phase locked to the frequency of the PCM pu
laser. Unlike the case of a COF laser, phase locking in a P
laser does not depend on the feedback phase. In partic
phase locking results in an ultranarrow laser linewidth t
has been shown to be stable even with the addition of n
@9#. By continuing steady states and computing the unsta
manifolds of saddle points we find that hysteresis loops
global bifurcations are involved in the mechanism of locki
in the PCF laser.

II. RATE EQUATIONS

Our object of study is a single-mode PCF laser receiv
feedback from a PCM that responds instantaneously, a
shown schematically in Fig. 1. The length of the laser
typically less than 1 mm, while the length of the extern
cavity L can be several centimeters to 1 m, leading to typi
delay timest52L/c in the range of 0.4 ns to 7.0 ns.

The rate equations describing this PCF laser are well
tablished@7,9,10# and can be written as

dE

dt
5

1

2 F2 iaGN@N~ t !2Nsol#1S G~ t !2
1

tp
D GE~ t !

1kE* ~ t2t!exp@ ifPCM#,
~1!

dN

dt
5

I

q
2

N~ t !

te
2G~ t !uE~ t !u2

for the evolution of the slowly varying complex electr
field E(t)5Ex(t)1 iEy(t) and the population inversion
N(t). In system ~1!, nonlinear gain is included asG
5GN(N(t)2N0)(12eP(t)), where e53.5731028 is the
nonlinear gain coefficient andP(t)5uE(t)u2 is the intensity.
This produces an effective detuning of 166 MHz. Parame
values are set to realistic values@10#, namely, the line-width
©2002 The American Physical Society20-1
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enhancement factora53, the optical gainGN51190 s21,
the photon lifetime tp51.4 ps, the injection currentI
565.1 mA, the magnitude of the electron chargeq51.6
310219 C, the electron lifetimete52 ns, and the transpar
ency electron numberN051.643108. The phase shiftfPCM
at the PCM was set to zero andNsol5N011/(GNtp). The
feedback term in system~1! involves the feedback ratek and
the external cavity round-trip timet, which we fix at t
52/3 ns. Together they form the dimensionless bifurcat
parameterkt.

System~1! is written in the frame of reference of th
solitary laser. A locked solution is the one where the f
quency of the PCM pump laser is locked to that of the s
tary laser and, therefore, locked solutions are steady stat
system~1!. Note that noise terms due to spontaneous em
sion have been left off system~1!. It has been shown tha
both intensity and frequency noise are negligible at the
frequency range we are dealing with@7#.

Mathematically, system~1! is a system of DDEs@17#. The
state of the system at timet.0 is a continuous function on
the time interval@ t2t,t#, which is an evolution of the initial
condition defined on the time interval@2t,0#. Therefore, the
system is infinite dimensional. While (E,N)-space is not the
phase space of system~1!, it is nevertheless helpful to show
the dynamics projected onto (E,N)-space, which is also
called the physical space of system~1!.

System~1! is symmetric under the transformationE→
2E, which corresponds to a rotation ofp of theE-plane, so
that an attractor is either symmetric, or has a symme
counterpart@10,21#. Physically, this symmetry correspond
to a phase shift byp. The symmetry implies restrictions o
the types of bifurcations of periodic solutions: for examp
symmetric periodic solutions cannot undergo perio
doubling bifurcations@22#. More generally, this discrete
symmetry allows for the possibility of symmetry-breakin
bifurcations. Note that the PCF laser considered here is
ferent from the COF laser in terms of the underlying sy
metry of the governing equations@21#. The COF laser is
symmetric under any rotation of the electric fieldE and does
not feature symmetry-breaking bifurcations.

III. COMPUTATIONAL METHODS FOR DDEs

In our study we make use of very recent development
theory and numerical methods for DDEs. In simulations
integrate system~1! with an Adams-Bashforth fourth-orde
multistep method. Moreover, we use recently develop
tools for DDEs that go beyond simulation.

First, we use the continuation package DDE-BIFTOO
@18#, consisting of Matlab routines, for the bifurcation ana
sis of steady states and periodic solutions. This not only

FIG. 1. Sketch of a semiconductor laser with phase-conjug
feedback.
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lows one to find and follow stable solutions~those one also
finds by simulation!, but also unstable ones. Furthermor
DDE-BIFTOOL detects local bifurcations, including saddl
node bifurcations, Hopf bifurcations, period-doubling bifu
cations, and saddle-node bifurcations of limit cycles. T
continuation of bifurcations leading to mixed-mode oscil
tions of a COF laser in Ref.@23# and our bifurcation analysis
of the PCF laser here and in Ref.@24# are first examples of
continuation studies with DDE-BIFTOOL.

Second, we compute the one-dimensional~1D! unstable
manifolds of saddle steady states with one unstable eig
value. Each 1D unstable manifold has two branches, wh
are computed by integrating from two initial condition
along the associated 1D unstable eigendirection close to
on different sides of the steady state. This eigendirection
be found by an iterative approach@25# or with a routine that
was recently added to DDE-BIFTOOL. Knowing at whic
attractor the branches of 1D unstable manifolds end up
crucial for understanding the global dynamics, as will b
come clear in Sec. V.

IV. BIFURCATION DIAGRAMS

Figure 2 contains two bifurcation diagrams. In Fig. 2~a!
we integrated system~1! and plotted~after transients died
away! the normalized value of the inversionN̂5(N/Nsol
21)3103 whenever the intensityP crossed its average
value in the positive direction@10#. The region with no
points corresponds to a locked solution, a small numbe
points correspond to a periodic solution, and a large num
of points correspond to chaotic dynamics. Due to the pr
ence of hysteresis discussed below, the periodic solution
ktP@0.0000,0.2953# was computed for increasingkt, while
the periodic solution forktP@0.7487,0.9004# was computed
for decreasingkt.

Figure 2~b! was obtained with DDE-BIFTOOL. For
steady states we plot Re(E) and for periodic solutions we

te

FIG. 2. Bifurcation diagram, obtained by simulation showin

normalized inversionN̂ versus the feedback strengthkt ~a!, and
computed with DDE-BIFTOOL showing a normalized amplitud
versuskt ~b!; see text for details.
0-2
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plot umax@Re(E)#2min@Re(E)#u, offset by the Re(E) value
of the steady states at the Hopf point. Attracting solutions
drawn as solid curves, while unstable solutions are draw
dashed curves. By studying the eigenvalues of the system
are able to identify the bifurcations involved, namely
saddle-node bifurcation~SN!, a Hopf bifurcation~H!, period-
doubling bifurcations~PD!, and a saddle-node bifurcation o
limit cycles ~SL!. A global saddle-focus heteroclinic~SFH!
bifurcation was observed atkt'0.2953. The one-
dimensional unstable manifold of one saddle approaches
other saddle along its stable manifold in a spiralling fashi
In light of the symmetry of system~1!, this is the case of a
Shil’nikov bifurcation with negative saddle quantity, that
not involving horseshoe dynamics; see Ref.@22# and Sec.
VI A. The symmetry of solution branches, which can
found from the respective phase portraits, is indicated at
top and bottom of Fig. 2.

Figure 2~a! is useful for investigating bifurcations of a
tractors, but in Fig. 2~b! we also follow unstable solution
and their bifurcations. We can already see that the sys
features hysteresis at the boundaries of the locking reg
which is discussed in more detail below. Figure 2~b! also
shows that the extra branches that develop in Fig. 2~a! at
kt>0.1347 are not bifurcations. They are due to the sy
metric limit cycle spiraling through, and thus producing ex
crossings with, its value of average intensity.

V. UNSTABLE MANIFOLDS

Figures 3 and 4 show the phase portraits correspondin
Fig. 2, in projection onto (E,N)-space ~Fig. 3! and the

FIG. 3. Phase portraits shown in projection onto (E,N)-space.
Except for~a! and~b!, plotted are both branches of the 1D unstab
manifold of one of the two symmetric saddle points (3). The box
is @2200,200#3@2200,200#3@7.613108,7.683108#; from ~a! to
~l!, kt takes the values 0.1000, 0.2700, 0.2952, 0.3065, 0.4
0.5180, 0.6182, 0.7183, 0.7252, 0.7253, 0.7904, and 0.9004.
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E-plane~Fig. 4!. Except for panels~a! and ~b!, which were
obtained by simulation, these phase portraits were obta
by plotting both branches of the 1D unstable manifold of o
of the two symmetric saddle points, marked by3; the cor-
responding attracting steady states are marked by1. The
bifurcation diagrams in Fig. 2, along with Figs. 3 and
present a complete picture of the route into and out of lo
ing for the PCF laser specified in Sec. II.

For very low values ofkt, system~1! has an almost pla-
nar periodic solution surrounding the origin of theE-plane
@Figs. 3~a! and 4~a!#, which is the continuation of the free
running laser (kt50) that has constant power and inversio
With increasing feedback the laser is destabilized. First,
periodic solution starts to curl up near two distinct poin
@Figs. 3~b! and 4~b!#. It develops a typical shape and do
end in a SFH bifurcation when it hits two saddle-foc
steady states atkt'0.2953,@Fig. 2~b!#. The exact nature of
this global bifurcation is detailed in Sec. VI A. The tw
saddle-focus steady states are each others symmetric c
terparts and are born together with two attractors in the
bifurcation atkt'0.2794, that is, before the SFH bifurcatio
@Fig. 2~b!#. This produces a region of bistability between t
pair of attracting steady states and the periodic solution.
deed, forktP@0.2794,0.2953# one branch of the 1D un
stable manifold converges to the periodic solution, while
other branch converges to a locked steady state@Figs. 3~c!
and 4~c!#. Physically, this bistability means that the laser
capable of producing locked or periodic output for the sa
experimental value ofkt, depending on the initial condition
After the SFH bifurcation, bistability is lost and bot
branches of the saddle-focus steady state converge to on
the two locked solutions, which are the only attractors a

0,

FIG. 4. Projection of plots in Fig. 3 onto theE-plane; the square
is @2270,270#3@2270,270#.
0-3
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symmetric images of each other@Figs. 3~d! and 4~d!#.
This bistability leads to a hysteresis loop: for increas

kt the symmetric periodic solution is destroyed in the S
bifurcation and the system jumps to one of the steady sta
whereas for decreasingkt the two steady states are d
stroyed in the SN bifurcation and the system jumps to
symmetric periodic solution. So not only do we see a qu
tative change in the attracting solutions, but we also se
change in the symmetry of the attractor, as is indicated
Fig. 2.

As kt is increased further through the locking region, t
two branches of the 1D unstable manifold of the sad
steady state continue to converge to the respective loc
solutions, but with an increasingly larger degree of spiral
@Figs. 3~e!–3~h! and 4~e!–4~h!#. Physically, this spiraling
corresponds to the characteristic relaxation oscillations of
laser ~a periodic exchange of energy between electric fi
and inversion!, which is still damped. Atkt'0.7247 there is
a SL bifurcation creating two pairs of symmetric period
solutions@Fig. 2~b!#, one attracting and one of saddle typ
The attracting periodic solutions grow at a rate proportio
to the square root of the deviation ofkt from its value at
bifurcation; one speaks of an undamping of the relaxat
oscillations. The saddle periodic solutions shrink down to
locked steady state and disappear in a subcritical Hopf bi
cation~H! at kt'0.7487; see Fig. 2~b!. This bifurcation re-
sults in the loss of stability of the locked steady states
forms the boundary of the locking range. The system jum
to one of the two attracting periodic solutions and the la
produces self-pulsations~relaxation oscillations!. Indeed,
both branches of the unstable manifold of the saddle ste
state end up at an attracting periodic solution@Figs. 3~j! and
4~j!#.

In other words, also the right-hand locking boundary
associated with a region of bistability: forkt
P@0.7247,0.7487# both the pair of locked solutions as we
as the pair of periodic solutions corresponding to undam
relaxation oscillations are stable. Again, this leads to a h
teresis loop whenkt is swept up and down through SL an
H.

Note already that the two branches of the unstable m
fold of the saddle steady state behave differently just after
@Figs. 3~i! and 4~i!# and just before H@Figs. 3~j! and 4~j!#. As
will be discussed in detail in Sec. VI B, this implies th
existence of a heteroclinic bifurcation between SL and H

Whenkt is increased further, the pair of stable period
solutions undergoes a period-doubling cascade startin
kt'0.8393 @Fig. 2~b!#. This eventually leads to both
branches of the 1D unstable manifold of the saddle ste
state accumulating on a chaotic attractor@Figs. 3~l! and 4~l!#.
For even larger values ofkt the two attractors collide in an
attractor crisis caused by a collision of their basins of attr
tion, culminating in symmetry restoring inside the chao
region @10#.

VI. GLOBAL BIFURCATIONS

We already mentioned in the preceding section tha
both boundaries of the locking range we find global bifurc
01622
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tions, namely, a saddle-focus heteroclinic bifurcation b
tween two saddle steady states at the left-hand boundary
a heteroclinic bifurcation between a saddle steady state a
saddle periodic solution at the right-hand boundary. We n
discuss these two global bifurcations in detail.

A. Heteroclinic connection between two steady states

In Figure 5~a! we show the symmetric limit cycle jus
before the SFH bifurcation in which it hits the pair of sadd
focus steady statesx1 and x2. A time-trace ofEy over its
periodT'41.0t is shown in Fig. 5~c!, where the mesh points
used in the DDE-BIFTOOL continuation are highlighte
When approaching the SFH bifurcation the periodT goes to
infinity. At SFH the periodic solution disappears and inste
we have a symmetric pair of heteroclinic connections
tweenx1 and x2, one of which is shown in Fig. 5~b!. This
connecting orbit was computed with the new extension
DDE-BIFTOOL introduced in Ref.@26#. Its time-trace with
highlighted mesh points is shown in Fig. 5~d!. An analysis of
the eigenvalues of the saddle foci shows a negative sa
quantity,s5l11Re(l2,3), wherel1.0, while l2,3 are the
complex pair of eigenvalues with negative real part that
closet to the imaginary axis. This implies that there is
unique bifurcating stable limit cycle@22#.

The fact that this global bifurcation appears as two sim
taneous heteroclinic connections is due to the symmetry
system~1!. When one divides out the symmetry and iden
fies x1 and x2 then one gets just a regular saddle-focus h
moclinic connection.

We remark that after but near the SFH bifurcation t
system is excitable—an example of excitability due to a h
eroclinic bifurcation@27#. When the locked solution is per
turbed to the other-side of the saddle steady state it
produce a large excursion by following roughly the old h
eroclinic connection and ending up at the other locked so
tion @Figs. 3~d! and 4~d!#. Physically, this corresponds to

FIG. 5. The periodic solution just before the saddle-focus h
eroclinic bifurcation~a! and the heteroclinic connection between t
saddle steady statesx1 andx2 at the bifurcation~b!. Panels~c! and
~d! show the corresponding time traces ofEy with the mesh points
highlighted.
0-4
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phase jump byp and a relaxing pulse in the power of th
laser. We remark that the amplitude of this pulse is qu
small. This can also be inferred from Fig. 4~d!: the distance
from the origin in theE-plane does not change much and t
power is the square of this distance.

B. Heteroclinic connection between a steady state
and a periodic orbit

Between SL and H we have another region of bistabi
where again the laser can produce qualitatively differ
stable output depending on the initial condition. The infini
dimensional stable manifold of the unstable periodic solut
forms the boundary between solutions converging to
locked steady state or the stable periodic solution.

As the unstable periodic solution decreases in size th
must be a heteroclinic bifurcation located between the
attractors, and we explain this in detail now. Figures 3~i! and
4~i! show the 1D unstable manifolds forkt50.7252, which
is typical of the regionktP@0.7247,0.7252# where we see
one branch spiraling into a periodic solution, while the oth
branch spirals to a locked solution. However, atkt
50.7253@Figs. 3~j! and 4~j!#, one branch spirals into a per
odic solution as before, but the other branch now spirals
to the symmetric counterpart of this periodic solution. Th
implies that between the values ofkt50.7252 andkt
50.7253 a heteroclinic bifurcation must take place, as
sketched in Fig. 6. Initially, the 1D unstable manifo
Wu(x0) of x0 spirals into the locked solution@Fig. 6~a!#. As
kt is increased, the amplitude of the saddle periodic solu
G1 starts to decrease, from maximum amplitude at SL to z
amplitude at H, as can be seen in Fig. 2~b!. For a particular
value of kt,Wu(x0) forms a connection with the stabl
manifold Ws(G1) of the saddle periodic solutionG1 @Fig.
6~b!#. As kt is increased further this connection is lost a
Wu(x0) spirals out to the attracting periodic solutionG2 @Fig.
6~c!#. This behavior is preserved after the subcritical Ho
bifurcation ~H!: one branch of the saddle steady state c
verges to a stable periodic solution and the other branch
verges to the symmetric counterpart of this periodic solut
@Figs. 3~k! and 4~k!#.

VII. DISCUSSION

We studied in detail the transitions into and out of locki
of a semiconductor laser with phase-conjugate feedb
c-

f
ic

c
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Both feature bistabilities that lead to hysteresis loops. F
thermore, both transitions to locking are associated with g
bal bifurcations, namely, a saddle-focus heteroclinic bifur
tion and a heteroclinic bifurcation between a steady state
a periodic solution, respectively. Recently developed to
for DDEs allowed us to study these global bifurcations
unprecedented detail.

The bifurcation scenario we described is structura
stable. Initial investigations of some bifurcation curves in t
plane of kt versus injection current indicate that this sc
nario appears to be typical for a PCF laser pumped nea
threshold current~up to about 7.7% above threshold!, which
is the region of injection current most commonly inves
gated in feedback experiments. The construction of a
two-dimensional bifurcation diagram is the next logical ste
However, at present this is quite a challenge and requ
further developments of numerical methods for DDEs. W
are hopeful to report results in this direction in the near
ture.

Other ongoing investigations of the PCF laser concern
role of periodic solutions and their unstable manifolds
transitions to chaos for larger values ofkt. For a study of the
breakup of a torus and a subsequent sudden transitio
chaos see Ref.@24#.

In more general terms, we believe that the results p
sented here showcase the usefulness of continuation
manifold computations for the study of DDEs.
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FIG. 6. Before~a!, at ~b!, and after~c! a heteroclinic connection
between a saddle steady statex0 and a saddle periodic solutionG1.
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